. SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

٠.

COURSE OUTLINE

Course Title:	DATA BASE MANAGEMENT I		
Code No.:	EDP215-5		
Program:	BUSINESS DATA PROCESSING	•	
Semester:	FOUR		
Date:	1985 01		
Author:	. DENNIS OCHOSKI		

New:

Revision: X

APPROVED:

Chairperson

Date: 85.01.2

-1-

DATA BASE MANAGEMENT I

EDP215-5

Length of Course: 5 periods per week for one semester

- <u>Texts</u>: Database Processing David Kroenke SEED A.D.S. (Application Development System) Pocket Guide SEED D.S.O. (Decision Support Option) Pocket Guide
- Other References : Principles of Data-Base Management James Martin SEED KERNEL User Guide SEED BLOOM User Guide SEED HARVEST User Guide

Purpose :

This is an introductory course in Database Management systems.

The course begins with a study of the necessary terminology and concepts to gain an appreciation of what a data base management system is. Data base design skills are developed by defining and writing schemas, sub-schemas and set relationships, and also by the drawing of Bachman diagrams.

Practical skills are developed through the study and use of SEED, a CODASYL data base, including its data manipulation language, online inquiry, and report generator.

Objectives :

This course extends the concepts of structured analysis and design to include the data base environment. At the conclusion of the course, the student, having analysed a business application will be able to accomplish the following :

- a) the definition of a data base and its purpose,
- b) establish relationships between a given set of data attributes,
- c) document the logical views of the data structures required by the application,
- d) synthesize the logical views of the data structures into an overall logical SCHEMA,
- e) code the logical views of the data structures (SUB-SCHEMA) and the SCHEMA, for a data base system,

Obectives cont'd :

- f) implement a data base on a computer,
- g) develop and implement COBOL programs that use a data base,
- h) use a Query language against the data base,
- i) use a Report Generator language,
- j) establish and implement data access and controls on the data base.

Student Evaluation :

The student's final grade will consist of the following components :

Tests (3 x 20)	60%
Assignment #1	1.0%
Assignment #2	25%
Participation	5%
	100%

Assignment Deadlines : each assignment must be handed in ON TIME, otherwise they are subject to a 5% deduction per day late. This will be enforced.

> All assignments must be handed in, otherwise the student has not fully completed the course and is subject to receiving an "R" grade.

Grading : A -- 85 to 100% B -- 70 to 84 C -- 60 to 69 R -- 0 to 59

NOTE : A student will be allowed to do a re-write if :

- (1) he/she has a passing final grade and wishes to better that grade,
- (2) he/she does not have a passing final grade and that grade is 50% or better.

Material to be covered :

REFERENCE	TOPIC	DESCRIPTION
Kroenke Chapter 1	1	Introduction - data base processing - advantages and disadvantages - components of a Business Database System
Kroenke Chapter 2	2	The Database Development Process - overview - specification stage - evaluation stage - design and implementation
Kroenke Chapter 3	3	File Organization - sequential file processing - indexed sequential file organization - file indexes - direct file organization
Kroenke Chapter 4	4	Data Structures - flat files - logical record relationships - tree (hierarchical) relationships - record addressing - simple and complex networks - secondary keys
Kroenke Chapter 5	5	Data Base Design - logical database design - physical database design - database models
Kroenke Chapter 6	6	Logical Database Design - logical design primitives - example logical design

Kroenke Chapter 9,10

CODASYL Data Bases

- overview
- architecture of a CODASYL data base
- data definition
- data manipulation
- schema and sub-schema descriptions

Functions of Database Management Systems

- responsibility for functions
- concurrent processing
- database recovery and responsibility
- security and privacy

Kroenke Chapter 11 8

7